心律失常(Cardiac arrhythmia)为临床常见的心血管病症,具有发病率高、危害性大的特点,可导致心源性猝死(Sudden cardiac death,SCD)的发生。目前仍是全球共同面临的公共卫生问题之一,奎尼丁、胺碘酮等是临床上应用较为广泛的抗心律失常西药,但由于其均有不同程度促心律失常的副作用,该类药物的应用具有一定局限性。然而,天然药物和中药中有多种活性物质可应用于心脑血管领域,从其中寻找具有抗心律失常活性的有效物质,成为发现和开发新药的重要手段之一。目的本课题旨在研究野黄芩素的制备方法,并在活性验证下对其进行结构修饰。通过野黄芩素衍生物对氯化钡和乌头碱诱发大鼠心律失常、心电学指数的影响以及其对电压门控离子通道的调节机制,探究野黄芩素衍生物的抗心律失常活性及作用机制,并与模板分子野黄芩素进行对比。以期发现活性更强、成药性更佳的抗心律失常活性物质,为深入探讨野黄芩素的应用以及抗心律失常药物的开发提供参考。方法1.野黄芩素的制备以野黄芩苷为原料,95%乙醇为溶剂,利用浓硫酸于氮气保护条件下回流4h将其糖苷键AZD2281水解断裂,得到野黄芩素。2.野黄芩素的结构修饰以野黄芩素为原料,对其A环、B环和A、B环进行结构修饰。首先利用二氯二苯甲烷保护野黄芩素A环上邻二酚羟基得到中间体,其次在中间体B环4’位羟基上引入不同的基团如:吗啉-4-甲酰氯、4-甲基哌嗪-1-甲酰氯、乙基氨基甲酰氯等,最后在钯碳氢气下将保护基脱下,得到目标产物。3野黄芩素衍生物的抗心律失常活性测定本部分先以氯化钡复制大鼠心律失常模型探讨野黄芩素衍生物的抗心律失常活性差异。舌下静脉给药后,记录大鼠心电图和心电学指数,探究野黄芩素及其衍生物的恢复时间和维持时间差异,以及对HR、QT、QTc和RR心电学指数的影响,综合分析筛选出抗心律失常活性较佳的化合物Wconductive biomaterials8、W12和W15。进一步研究化合物W8、W12和W15对乌头碱诱发大鼠心律失常模型的影响。舌下静脉给药后观察大鼠心电图,记录大鼠心脏出现室早(VP)、室速(VT)、室颤(VF)和停搏(CA)的时长,分别换算成乌头碱的用量。探究野黄芩素及其衍生物所需乌头碱用量的差别,筛选出抗心律失常活性最佳的化合物W12。最后研究化合物W12不同给药剂量(2、4、8和16mg/kg)对氯化钡和乌头碱诱发大鼠心律失常模型的影响,得出最佳给药剂量为8mg/kg。用化合物W12的最佳给药浓度8mg/kg,进一步研究此剂量对健康大鼠正常心电学指数的影响,充分考虑其成药性。4.抗心律失常活性最佳化合物W12的机制研究本部分将研究抗心律失常活性最佳的化合物W12对HFL1和HEK293T细胞毒性情况,考察其成药性。将化合物W12与Nav1.1和Cav1.1进行分子对接,与野黄芩素对比评分情况。应用膜片钳技术探讨该化合物对HEK293细胞Nav1.1和Cav1.2离子通道的作用机制。结果1.野黄芩素的制备情况以野黄芩苷为原料,用浓硫酸对其糖苷键进行水解,经核磁和质谱验证得到野黄芩素。2.野黄芩素的结构修饰情况以野黄芩素为原料,用二氯二苯甲烷保护其A环邻二酚羟基,经核磁和质谱验证得1个A环结构修饰化合物中间体;以中间体为原料,于其B环4’位引入吗啉-4-甲酰氯和氯丁酰氯后钯碳氢气下脱保护基,核磁和质谱验证得到2个B环结构修饰化合物;以中间体为原料,于其B环4’位引入吗啉-4-甲酰氯、4-甲基哌嗪-1-甲酰氯、乙基氨基甲酰氯等,经核磁和质谱验证得到19个A、B环结构修饰化合物。3.野黄芩素衍生物抗心律失常活性测定情况通过探讨野黄芩素衍生物对氯化钡诱发大鼠心律失常的影响情况,发现与野黄芩素比,野黄芩素衍生物均可显著缩短恢复时间(P<0.001);其中化合物W8、W12和W15的维持时间均较长,其中与野黄芩素比,化合物W12可显著延长维持时间(P<0.05),且维持时间大于20min的selleckchem大鼠只数最多。化合物W8、W12和W15几乎不影响大鼠HR、QT、QTc和RR的心电学指数,且均可纠其指数异常。进一步研究对乌头碱诱发大鼠心律失常的影响,发现与野黄芩素比,化合物W12可显著提高致使大鼠发生室颤(VF,P<0.05)和停搏(CA,P<0.01)的乌头碱用量。探讨化合物W12不同给药剂量(2、4、8和16mg/kg)对氯化钡诱发大鼠心律失常影响情况,发现化合物W12给药标准为8mg/kg时,与野黄芩素比,具有较快的恢复时间(P<0.001)和较长的维持时间,且维持时间大于20min的大鼠只数最多,因此最佳给药标准定为8mg/kg。用最佳给药标准8mg/kg给予健康大鼠,探究化合物W12对大鼠正常心电图的影响,发现与生理盐水组比,化合物W12不会引起大鼠心电学指数异常(P>0.05),与氯化钡组比,化合物W12可显著纠正氯化钡引起的大鼠HR、QT、QTc和RR心电学指数异常(P<0.05)。4.抗心律失常活性最佳化合物W12的机制研究情况化合物W12浓度为25μM时对HFL1和HEK293T细胞均表现出较低的毒性,提示其成药性良好。化合物W12与Nav1.5蛋白和Cav1.1蛋白的结合分数情况均优于野黄芩素。应用膜片钳技术验证了30μM浓度时,化合物W12可使Nav1.5通道开放时间变短,而对Cav1.2通道的IC_(50)值大于30μM。结论本研究所合成的野黄芩素衍生物相比野黄芩素均有起效快的特点,其中化合物W12的恢复时间短、维持时间长且维持时间大于20min的大鼠只数最多。另一方面,化合物W12可显著提高致使大鼠发生室颤(VF)和停搏(CA)的乌头碱用量。给药标准为8mg/kg时,不会引起大鼠心电学指数异常,且可纠正氯化钡引起的大鼠HR、QT、QTc和RR心电学指数异常。化合物W12浓度为25μM时几乎对HFL1和HEK293T细胞无毒性,成药性较好。化合物W12与Nav1.5和Cav1.2离子通道有较强的亲和力,浓度为30μM时会明显加快Nav1.5的失活,而大于30μM时才可检测到Cav1.2通道的IC_(50)值,说明化合物W12对离子通道作用温和,不会过度抑制多个离子通道,有利于离子通道之间恢复平衡。据此,化合物W12可作为具有开发前景的抗心律失常药物深入研究。