1型糖尿病(T1D)患者需要通过外源性胰岛素的输送将血糖(BG)维持在治疗范围内。目前,已有的几种基于模型预测控制和强化学习(RL)的胰岛素给药算法存在样本效率差、奖励机制过于简单、血糖调控效果不佳等问题。为此提出了一种基于强化学习的带有指导网络的胰岛素给药策略(insulin administration strategy with guided network, IASGN),针BLZ945使用方法对给药策略安全性能和快速性的特点,MK-1775纯度引入累积情节奖励和分类经验回放方法,按照不同的重要性采样权重增加了精英样本池,并基于精英样本池训练给药指导网络,对策略网络进行动作指导,改进了奖励机制,在FDA批准的UVA/Padova T1D模拟器中验证了该方法的性能。结果显示,该方法TIR(time in range)达到了98.21%Bio-based biodegradable plastics,TBR(time below range)接近于0,CVGA中所有患者均处于A+B区的安全范围,可以使患者血糖长期处于正常范围内,避免了低血糖的风险,在与基准方法对比中也获得了更好的表现。